Cart (Loading....) | Create Account
Close category search window
 

The nanoindentation applied to predict the interface delamination for the C/amorphous Si composite film

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chang-Fu Han ; Department of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan 701, Republic of China ; Chao-Yu Huang ; Bo-Hsiung Wu ; Jen-Fin Lin

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.3246618 

In the present study, the indentation depth corresponding to the pop-in arising in the loading process is found to be quite close to the C/amorphous Si composite film thickness, regardless of the C-film thickness. This load-depth behavior gives a clue that the occurrence of pop-in is perhaps related to the buckling of the composite film, which had already delaminated from the silicon substrate. This indentation depth of buckling predicted by the present model is quite close to the pop-in depth obtained from experimental results, regardless of the change in the C-film thickness. This characteristic reveals that the present model is developed successfully to predict the pop-in depth of a specimen, and the pop-in is indeed created due to the buckling of the composite film under a compression stress.

Published in:

Journal of Applied Physics  (Volume:106 ,  Issue: 8 )

Date of Publication:

Oct 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.