Cart (Loading....) | Create Account
Close category search window

Two-dimensional numerical simulation of radio frequency sputter amorphous In–Ga–Zn–O thin-film transistors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Fung, Tze-Ching ; Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109, USA ; Chuang, Chiao-Shun ; Chen, Charlene ; Abe, K.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link: 

We reported on a two-dimensional simulation of electrical properties of the radio frequency (rf) sputter amorphous In–Ga–Zn–O (a-IGZO) thin-film transistors (TFTs). The a-IGZO TFT used in this work has the following performance: field-effect mobility eff) of ∼12 cm2/Vs, threshold voltage (Vth) of ∼1.15 V, subthreshold swing (S) of ∼0.13 V/dec, and on/off ratio over 1010. To accurately simulate the measured transistor electrical properties, the density-of-states model is developed. The donorlike states are also proposed to be associated with the oxygen vacancy in a-IGZO. The experimental and calculated results show that the rf sputter a-IGZO TFT has a very sharp conduction band-tail slope distribution (Ea=13 meV) and Ti ohmic-like source/drain contacts with a specific contact resistance lower than 2.7×10-3 Ω cm2.

Published in:

Journal of Applied Physics  (Volume:106 ,  Issue: 8 )

Date of Publication:

Oct 2009

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.