By Topic

A distributed and scalable RSVP-TE architecture for next generation IP routers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Nguyen, K.K. ; Dept. de Genie Electr. et de Genie Inf., Univ. of Sherbrooke, Sherbrooke, QC, Canada ; Jaumard, B.

Routers, whose main tasks include forwarding and best route computing, have undergone several design architectures in the last years in order to deal with the explosion of traffic in the Internet. Next generation routers are made with enhanced memory capacity and computing resources, distributed across a very high speed switching fabric. However, the current routing software products, particularly those built by third party developers, are not able to fully exploit the new hardware platform of these routers due to their centralized architectures with a solely control card being responsible for all routing and management tasks. This paper proposes a first fully distributed software architecture of the RSVP-TE module for next generation routers in order to scale with the stringent requirements of the MPLS signaling. The components of the current centralized architecture of RSVP-TE module are offloaded onto line cards in order to share the load between the control card and the line cards. Such a distributed architecture meets the scalability requirements, e.g., high volume of traffic of next generation routers. The robustness and resiliency are also improved. We propose an estimation of the scalability of the distributed RSVP-TE architecture based on the CPU utilization.

Published in:

High Performance Switching and Routing, 2009. HPSR 2009. International Conference on

Date of Conference:

22-24 June 2009