By Topic

Errors of phases and group delays in SAW RFID tags with phase modulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Tao Han ; Dept. of Instrum. Eng., Shanghai Jiaotong Univ., Shanghai, China ; Wei Lin ; Jiming Lin ; Weibiao Wang
more authors

To achieve high-volume code capacity for SAW-based radio frequency identification(RFID) tags, it is very important to improve the delay time resolution. An efficient encoding method is to use the phase delay of the carrier wave in the pulses, but one has to solve the issues of the phase ambiguity at unknown temperatures and the location of reflectors to exact positions. In this paper, a method is proposed to obtain a high-phase delay resolution by measuring group delays and constructing a certain restriction on the exact positions of reflectors. To define the restriction parameter for a SAW RFID system with large code capacity, it is imperative to have a priori knowledge of the errors of the phases and group delays. The experimental and simulation errors for both the phases and the group delays, originated from the design procedure, the temperature effect, the fabrication process and the measurement, are presented. The error probability distribution curves in simulation and experiments are plotted. The maximum error of phase delay is about plusmn 14deg, and the maximum error of group delay is about plusmn 4 periods. The temperature range in investigation is from -5 to 45degC.

Published in:

Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on  (Volume:56 ,  Issue: 11 )