By Topic

Evaluating the investment risk of electrical project based on particle swarm optimization with support vector machine optimized

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Shuliang Liu ; Inst. of Bus. Adm., North China Electr. Power Univ., Baoding, China ; Zhizhen Yin

In this paper, we use particle swarm optimization with support vector machine optimized to evaluate the investment risk of electrical project. A hybrid intelligent system is applied to evaluation of electrical equipment, combining particle swarm optimize algorithm (PSO) and support vector machines (SVM). At first, we can make use of PSO obtaining appropriate parameters in order to improve the general recognizing ability of SVM. And then, these parameters are used to develop classification rules and train SVM. The effectiveness of our methodology was verified by experiments comparing BP neural networks with our approach.

Published in:

Applied Superconductivity and Electromagnetic Devices, 2009. ASEMD 2009. International Conference on

Date of Conference:

25-27 Sept. 2009