Cart (Loading....) | Create Account
Close category search window
 

Bubble scheduling: A quasi dynamic algorithm for static allocation of tasks to parallel architectures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yu-Kwong Kwok ; Dept. of Comput. Sci., Hong Kong Univ. of Sci. & Technol., Hong Kong ; Ahmad, I.

We propose an algorithm for scheduling and allocation of parallel programs to message-passing architectures. The algorithm considers arbitrary computation and communication costs, arbitrary network topology, link contention and underlying communication routing strategy. While our technique is static, the algorithm is quasi dynamic because it is not specific to any particular system topology and thus can be used at run-time for the processor configuration available at that time. The proposed algorithm, called Bubble Scheduling and Allocation (BSA) algorithm, works by first serializing the task graph and “injecting” all the tasks to one processor. The parallel tasks are then “bubbled up” to other processors and are inserted at appropriate time slots. The edges among the tasks are also scheduled by treating communication links between the processors as resources. The scheduling of messages on the links depends on the routing strategy, such as circuit switching and wormhole routing, of the underlying network. The proposed algorithm has admissible time complexity and is suitable for regular as well as irregular task graph structures

Published in:

Parallel and Distributed Processing, 1995. Proceedings. Seventh IEEE Symposium on

Date of Conference:

25-28 Oct 1995

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.