By Topic

Optimal Slot Opening Width for Magnetic Noise Reduction in Induction Motors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Le Besnerais, J. ; Lab. d''Electrotech. et d''Electron. de Puissance (L2EP), Ecole Centrale de Lille, Villeneuve d''Ascq, France ; Lanfranchi, V. ; Hecquet, M. ; Romary, R.
more authors

This paper presents a method to characterize the main magnetic force waves occurring in a sinusoidally fed induction machine. Three main force types are identified: slotting force waves, winding force waves, and saturation force waves. Slotting force waves are characterized in terms of number of nodes, velocity, propagation direction, and magnitude. On the ground of the expression of these forces magnitude, a method to cancel a given magnetic force wave by properly choosing the rotor slot or stator slot opening width is presented. This new method is validated with both simulations and experiments. Contrary to the common design rule that advices to decrease rotor and stator slot openings width in order to reduce magnetic noise, it is shown that a wider slot opening can lower the global noise level when properly chosen.

Published in:

Energy Conversion, IEEE Transactions on  (Volume:24 ,  Issue: 4 )