Cart (Loading....) | Create Account
Close category search window
 

Optimum Information Transfer Rates for Communication through Haptic and Other Sensory Modalities

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tan, H.Z. ; Haptic Interface Res. Lab., Purdue Univ., West Lafayette, IN, USA ; Reed, C.M. ; Durlach, N.I.

This paper is concerned with investigating the factors that contribute to optimizing information transfer (IT) rate in humans. With an increasing interest in designing complex haptic signals for a wide variety of applications, there is a need for a better understanding of how information can be displayed in an optimal way. Based on the results of several early studies from the 1950s, a general “rule of thumb” has arisen in the literature which suggests that IT rate is dependent primarily on the stimulus delivery rate and is optimized for presentation rates of 2-3 items/s. Thus, the key to maximizing IT rate is to maximize the information in the stimulus set. Recent data obtained with multidimensional tactual signals, however, appear to contradict these conclusions. In particular, these current results suggest that optimal delivery rate varies with stimulus information to yield a constant peak IT rate that depends on the degree of familiarity and training with a particular stimulus set. We discuss factors that may be responsible for the discrepancies in results across studies including procedural differences, training issues, and stimulus-response compatibility. These factors should be taken into account when designing haptic signals to yield optimal IT rates for communication devices.

Published in:

Haptics, IEEE Transactions on  (Volume:3 ,  Issue: 2 )

Date of Publication:

April-June 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.