By Topic

A Novel Hybrid Segmentation Method for Medical Images Based on Level Set

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Gang Wang ; Sch. of Inf. Sci. & Eng., Northeastern Univ., Shenyang, China ; Huijuan Liu ; Shi Zhang ; Jianming Liang

In this paper, integrating boundary and region information of medical images, we propose a novel hybrid segmentation method based on level set. The main contributions of this paper are to modify the velocity function for the boundary-based level set method, and to design a novel energy function as a stopping criterion. This velocity function is modified according to the statistical characteristics of the segmented regions during the evolution so that the medical images with weak boundary and concave region can be segmented. The stopping criterion depends on not only the boundary information of the image but also the statistical characteristics of the segmented regions, which can overcome the over-segmentation effectively. Furthermore, our method forces the level set function close to a signed distance function, therefore, eliminates the complex re-initialization procedure and reduces the side effects of re-initialization. Experimental results for real clinical images show the effectiveness of our method.

Published in:

Image and Signal Processing, 2009. CISP '09. 2nd International Congress on

Date of Conference:

17-19 Oct. 2009