By Topic

A Novel Segmentation Method for Left Ventricular from Cardiac MR Images Based on Improved Markov Random Field Model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Gang Wang ; Sch. of Inf. Sci. & Eng., Northeastern Univ., Shenyang, China ; Yubei Guo ; Shi Zhang ; Yue Ma

In this paper, we propose a improved Markov Random Field (MRF) segmentation model, which integrates region, priori knowledge and boundary information of the image, for segmenting left ventricle (LV) boundary from cardiac MR image. The proposed model incorporates geometry shape boundary information, and improves the objective function of traditional MRF model. Furthermore, Chaotic Simulated Annealing (CSA) algorithm is introduced to solve the MRF model for the first time. Since CSA algorithm introduces chaos ergodicity mechanism, it can take advantage of Chaos Algorithm (COA) and Simulated Annealing (SA) algorithm in the search process. CSA algorithm can not only avoid the limitations of mathematical optimization methods, but also greatly enhance the speed of global optimization. Experiments on clinical cardiac MR images show that the improved MRF model has high performance on segmenting LV boundary. The evaluation results illustrate that this model is robust, accurate and efficient, especially for the weak boundary and concave region .

Published in:

Image and Signal Processing, 2009. CISP '09. 2nd International Congress on

Date of Conference:

17-19 Oct. 2009