By Topic

Vision-Based Localization for Leader–Follower Formation Control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Mariottini, G.L. ; Dept. of Comput. Sci. & Eng., Univ. of Minnesota, Minneapolis, MN, USA ; Morbidi, F. ; Prattichizzo, D. ; Vander Valk, N.
more authors

This paper deals with vision-based localization for leader-follower formation control. Each unicycle robot is equipped with a panoramic camera that only provides the view angle to the other robots. The localization problem is studied using a new observability condition valid for general nonlinear systems and based on the extended output Jacobian. This allows us to identify those robot motions that preserve the system observability and those that render it nonobservable. The state of the leader-follower system is estimated via the extended Kalman filter, and an input-state feedback control law is designed to stabilize the formation. Simulations and real-data experiments confirm the theoretical results and show the effectiveness of the proposed formation control.

Published in:

Robotics, IEEE Transactions on  (Volume:25 ,  Issue: 6 )