By Topic

On Set-Based Multiobjective Optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zitzler, E. ; Comput. Eng. & Networks Lab. (TIK), Eidgenossische Tech. Hochschule Zurich, Zurich, Switzerland ; Thiele, L. ; Bader, J.

Assuming that evolutionary multiobjective optimization (EMO) mainly deals with set problems, one can identify three core questions in this area of research: 1) how to formalize what type of Pareto set approximation is sought; 2) how to use this information within an algorithm to efficiently search for a good Pareto set approximation; and 3) how to compare the Pareto set approximations generated by different optimizers with respect to the formalized optimization goal. There is a vast amount of studies addressing these issues from different angles, but so far only a few studies can be found that consider all questions under one roof. This paper is an attempt to summarize recent developments in the EMO field within a unifying theory of set-based multiobjective search. It discusses how preference relations on sets can be formally defined, gives examples for selected user preferences, and proposes a general preference-independent hill climber for multiobjective optimization with theoretical convergence properties. Furthermore, it shows how to use set preference relations for statistical performance assessment and provides corresponding experimental results. The proposed methodology brings together preference articulation, algorithm design, and performance assessment under one framework and thereby opens up a new perspective on EMO.

Published in:

Evolutionary Computation, IEEE Transactions on  (Volume:14 ,  Issue: 1 )