Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Hardware-Friendly Descreening

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Siddiqui, H. ; Sch. of Electr. & Comput. Eng., Purdue Univ., West Lafayette, IN, USA ; Boutin, M. ; Bouman, C.A.

Conventional electrophotographic printers tend to produce Moire?? artifacts when used for printing images scanned from printed material such as books and magazines. We propose a novel noniterative, nonlinear, and space-variant descreening filter that removes a wide range of Moire??-causing screen frequencies in a scanned document while preserving image sharpness and edge detail. This filter is inspired by Perona-Malik's anisotropic diffusion equation. The amount of diffusion of the image intensity resulting from applying the filter is governed by an edge intensity estimate that is robust under halftone noise. More precisely, the filter extracts a spatial feature vector comprising local intensity gradients estimated from a local window in a presmoothed version of the noisy input image. Tunable nonlinear polynomial functions of this feature vector are then used to perform one iteration of a discrete diffusion controlled by the intensity gradient. The polynomial functions and feature extraction kernels are selected empirically in order to minimize computation while ensuring robust performance across a wide range of test images on a target imaging platform. The algorithm uses integer arithmetic, mostly relying on low-cost bit-wise shift and addition operations, and uses a strictly sequential architecture to provide a cost-effective and robust descreening solution in practical imaging devices including copiers and multifunction printers. We compare the performance of the proposed algorithm to other descreening solutions and demonstrate that the new algorithm improves quality over the existing methods while reducing computation.

Published in:

Image Processing, IEEE Transactions on  (Volume:19 ,  Issue: 3 )