By Topic

Accuracy of Satellite Sea Surface Temperatures at 7 and 11 GHz

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Gentemann, C.L. ; Remote Sensing Syst., Santa Rosa, CA, USA ; Meissner, T. ; Wentz, F.J.

Satellite microwave radiometers capable of accurately retrieving sea surface temperature (SST) have provided great advances in oceanographic research. A number of future satellite missions are planned to carry microwave radiometers of various designs and orbits. While it is well known that the 11 GHz SST retrievals are less accurate than the 7 GHz retrievals, particularly in colder waters, it has not been demonstrated using existing microwave data. The Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) provides the means to examine the accuracies of SST retrievals using these channels in a systematic manner. In this paper, the accuracies of SSTs at 7 and 11 GHz are determined using two approaches: modeled and empirical. The modeled accuracies are calculated using an emissivity model and climatology SSTs, while empirical accuracies are estimated through validation of AMSR-E 7 and 11 GHz SST retrievals using over six years of data. It was found that the 7 GHz SST retrievals have less errors due to radiometer noise and geophysical errors than the 11 GHz retrievals at all latitudes. Additionally, while averaging the 11 GHz retrievals will diminish error due to uncorrelated radiometer noise, the geophysical error is still higher than for the 7 GHz retrievals, particularly at the higher latitudes.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:48 ,  Issue: 3 )