Cart (Loading....) | Create Account
Close category search window
 

Theoretical Study on Volcanic Plume \hbox {SO}_{2} and Ash Retrievals Using Ground TIR Camera: Sensitivity Analysis and Retrieval Procedure Developments.

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Corradini, S. ; Ist. Naz. di Geofisica e Vulcanologia (INGV), Rome, Italy ; Tirelli, C. ; Gangale, G. ; Pugnaghi, S.
more authors

In this paper, a sensitivity analysis and procedure development for volcanic-plume sulfur dioxide and ash retrievals using ground thermal infrared camera have been carried out. The semiconductor device camera, considered as a reference, has a spectral range of 8-14 ??m with noise equivalent temperature difference that is better than 100 mK at 300 K. The camera will be used to monitor and assess the hazards of Mt. Etna volcano to mitigate the risk and impact of volcanic eruptions on the civil society and transports. A minimum number of filters have been selected for sulfur dioxide (SO2) and volcanic ash retrievals. The sensitivity study has been carried out to determine the SO2 and volcanic ash minimum concentration detectable by the system varying the camera geometry and the atmospheric profiles. Results show a meaningful sensitivity increase considering high instrument altitudes and low camera-elevation angles. For all geometry configurations and monthly profiles, the sensitivity limit varies between 0.5 and 2 g ??m-2 for SO2 columnar abundance and between 0.02 and 1 for ash optical depth. Two procedures to detect SO2 and ash, based on the least square fit method and on the brightness temperature difference (BTD) algorithm, respectively, have also been proposed. Results show that high concentration of atmospheric water vapor columnar content significantly reduces the ash-plume effect on the BTD. A water vapor-correction procedure introduced improves the ash retrievals and the cloud discrimination in every season, considering all the camera geometries.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:48 ,  Issue: 3 )

Date of Publication:

March 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.