By Topic

Multifocus Image Fusion and Restoration With Sparse Representation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bin Yang ; Coll. of Electr. & Inf. Eng., Hunan Univ., Changsha, China ; Shutao Li

To obtain an image with every object in focus, we always need to fuse images taken from the same view point with different focal settings. Multiresolution transforms, such as pyramid decomposition and wavelet, are usually used to solve this problem. In this paper, a sparse representation-based multifocus image fusion method is proposed. In the method, first, the source image is represented with sparse coefficients using an overcomplete dictionary. Second, the coefficients are combined with the choose-max fusion rule. Finally, the fused image is reconstructed from the combined sparse coefficients and the dictionary. Furthermore, the proposed fusion scheme can simultaneously resolve the image restoration and fusion problem by changing the approximate criterion in the sparse representation algorithm. The proposed method is compared with spatial gradient (SG)-, morphological wavelet transform (MWT)-, discrete wavelet transform (DWT)-, stationary wavelet transform (SWT)-, curvelet transform (CVT)-, and nonsubsampling contourlet transform (NSCT)-based methods on several pairs of multifocus images. The experimental results demonstrate that the proposed approach performs better in both subjective and objective qualities.

Published in:

Instrumentation and Measurement, IEEE Transactions on  (Volume:59 ,  Issue: 4 )