By Topic

Vision-Based Automated Single-Cell Loading and Supply System

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Uvet, H. ; Dept. of Syst. Innovation, Osaka Univ., Toyonaka, Japan ; Hasegawa, A. ; Ohara, K. ; Takubo, T.
more authors

Automated continuous individual cell transfer is a critical step in single-cell applications using microfluidic devices. Cells must be aspirated gently from a buffer before transferring to operation zone so as not to artificially perturb their biostructures. Vision-based manipulation is a key technique for allowing nondestructive cell transportation. In this paper, we presented a design for an automated single-cell loading and supply system that can be integrated with complex microfluidic applications for examining or processing one cell at a time such as the current nuclear transplantation method. The aim of the system is to automatically transfer mammalian donor (~ 15 ??m) or oocyte (~ 100 ?? m) cells one by one from a container to a polydimethylsiloxane (PDMS) microchannel and then transport them to other modules. The system consists of two main parts: a single-cell suction module, and a PDMS-based microfluidic chip controlled by an external pump. The desired number of vacuumed cells can be directed into the microfluidic chip and stored in a docking area. From the batch, they can be moved to next module by activating pneumatic pressure valves located on two sides of the chip. The entire mechanism is combined with monitoring systems that perform detection/tracking and control.

Published in:

NanoBioscience, IEEE Transactions on  (Volume:8 ,  Issue: 4 )