By Topic

Sampling and Reconstruction of Sparse Signals in Fractional Fourier Domain

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ayush Bhandari ; Temasek Labs., Nanyang Technol. Univ., Singapore, Singapore ; Pina Marziliano

Sampling theory for continuous time signals which have a bandlimited representation in fractional Fourier transform (FrFT) domain-a transformation which generalizes the conventional Fourier transform-has blossomed in the recent past. The mechanistic principles behind Shannon's sampling theorem for fractional bandlimited (or fractional Fourier bandlimited) signals are the same as for the Fourier domain case i.e. sampling (and reconstruction) in FrFT domain can be seen as an orthogonal projection of a signal onto a subspace of fractional bandlimited signals. As neat as this extension of Shannon's framework is, it inherits the same fundamental limitation that is prevalent in the Fourier regime-what happens if the signals have singularities in the time domain (or the signal has a nonbandlimited spectrum)? In this paper, we propose a uniform sampling and reconstruction scheme for a class of signals which are nonbandlimited in FrFT sense. Specifically, we assume that samples of a smoothed version of a periodic stream of Diracs (which is sparse in time-domain) are accessible. In its parametric form, this signal has a finite number of degrees of freedom per unit time. Based on the representation of this signal in FrFT domain, we derive conditions under which exact recovery of parameters of the signal is possible. Knowledge of these parameters leads to exact reconstruction of the original signal.

Published in:

IEEE Signal Processing Letters  (Volume:17 ,  Issue: 3 )