By Topic

Fuzzy Logic and Sliding-Mode Controls Applied to Six-Phase Induction Machine With Open Phases

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Mohamed Amine Fnaiech ; Lab. of Innovative Technol., Univ. of Picardie Jules Verne, Amiens, France ; Franck Betin ; GÉrard-AndrÉ Capolino ; Farhat Fnaiech

The faulted mode of a six-phase induction machine (6PIM) denotes that the motor is working with one or more missing phases. This situation leads to torque oscillations and poor tracking behavior. Therefore, the design of a suitable robust control is a challenging task. In this way, this paper presents the application of fuzzy logic and sliding mode controls in order to obtain a high-accuracy positioning of a 6PIM rotor in both healthy and faulted modes. The two control strategies are completely different from a theoretical point of view, but the final objectives are to remove the drawbacks of the specific fault on interest. The experimental results are obtained on a dedicated setup based on a 6PIM coupled with a variable mechanical load and for which up to three phases can be removed.

Published in:

IEEE Transactions on Industrial Electronics  (Volume:57 ,  Issue: 1 )