By Topic

Human Age Estimation by Metric Learning for Regression Problems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Yangjing Long ; Max Planck Inst. for Math. in the Sci., Leipzig, Germany

The estimation of human age from face images has many real-world applications. However, how to discover the intrinsic aging trend is still a challenging problem. We proposed a general distance metric learning scheme for regression problems, which utilizes not only data themselves, but also their corresponding labels to strengthen the credibility of distances. This metric could be learned by solving an optimization problem. Via the learned metric, it is easy to find the intrinsic variation trend of data by a relative small amount of samples without any prior knowledge of the structure or distribution of data. Furthermore, the test data could be projected to this metric by a simple linear transformation and it is easy to be combined with manifold learning algorithms to improve the performance. Experiments are conducted on the public FG-NET database by Gaussian process regression in the learned metric to validate our framework, which shows that its performance is improved over traditional regression methods.

Published in:

Computer Graphics, Imaging and Visualization, 2009. CGIV '09. Sixth International Conference on

Date of Conference:

11-14 Aug. 2009