Cart (Loading....) | Create Account
Close category search window
 

Performance Issues in Evaluating Models and Designing Simulation Algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Ewald, R. ; Inst. of Comput. Sci., Univ. of Rostock, Rostock, Germany ; Himmelspach, J. ; Jeschke, M. ; Leye, S.
more authors

The increase and diversity of simulation methods bears witness of the need for more efficient discrete event simulations in computational biology-but how efficient are those methods, and how to ensure an efficient simulation for a concrete model? As the performance of simulation methods depends on the model, the simulator, and the infrastructure, general answers to those questions are likely to remain illusive; they have to besought individually and experimentally instead. This requires configurable implementations of many algorithms, means to define and conduct meaningful experiments on them, and mechanisms for storing and analyzing observed performance data.In this paper, we first overview basic approaches for improving simulation performance and illustrate the challenges when comparing different methods. We then argue that providing all the aforementioned components in a single tool, in our case the open source modeling and simulation framework JAMES II,reveals many synergies in effectively pursuing both questions.This is exemplified by presenting results of recent studies and introducing a new component to swiftly evaluate simulator code changes against previous experimental data.

Published in:

High Performance Computational Systems Biology, 2009. HIBI '09. International Workshop on

Date of Conference:

14-16 Oct. 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.