By Topic

Self-organized Fault-tolerant Routing in Peer-to-Peer Overlays

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Wojciech Galuba ; Ecole Polytech. Fed. de Lausanne, Lausanne, Switzerland ; Karl Aberer ; Zoran Despotovic ; Wolfgang Kellerer

In sufficiently large heterogeneous overlays message loss and delays are likely to occur. This has a significant impact on overlay routing, especially on longer paths. The existing solutions to this problem rely on message redundancy to mask the loss and delays. This incurs a significant bandwidth cost. We propose the forward feedback protocol (FFP) which only routes a single copy of the message and detects the message loss and excessive delays while routing. Failures are signaled along the routing paths. Based only on the simple binary signals, each overlay node locally and independently learns to route to avoid failures. The local node interactions lead to the emergence of fast reliable overlay routes. This is a continuous process, the system constantly self-organizes in response to changing delay and loss conditions. We evaluate the protocol in the Internet deployment and in simulation. Our system uses 2-5 times less bandwidth than the existing overlay routing approaches that rely on high message redundancy for fault-tolerance. Despite its marginal bandwidth investment in reliability, FFP achieves up to a 30% higher delivery success rate in comparison to the existing solutions. The protocol is scalable with local state size of O(log2 N) in terms of the network size and is universally applicable to all recursively routing overlays.

Published in:

2009 Third IEEE International Conference on Self-Adaptive and Self-Organizing Systems

Date of Conference:

14-18 Sept. 2009