By Topic

Environmentally Robust MEMS Vibratory Gyroscopes for Automotive Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Acar, C. ; Systran Donner Automotive, Schneider Electr., Concord, CA, USA ; Schofield, A.R. ; Trusov, A.A. ; Costlow, L.E.
more authors

Automotive applications are known to impose quite harsh environmental conditions such as vibration, shock, temperature, and thermal cycling on inertial sensors. Micromachined gyroscopes are known to be especially challenging to develop and commercialize due to high sensitivity of their dynamic response to fabrication and environmental variations. Meeting performance specifications in the demanding automotive environment with low-cost and high-yield devices requires a very robust microelectromechanical systems (MEMS) sensing element. This paper reviews the design trend in structural implementations that provides inherent robustness against structural and environmental parameter variations at the sensing element level. The fundamental approach is based on obtaining a gain and phase stable region in the frequency response of the sense-mode dynamical system in order to achieve overall system robustness. Operating in the stable sense frequency region provides improved bias stability, temperature stability, and immunity to environmental and fabrication variations.

Published in:

Sensors Journal, IEEE  (Volume:9 ,  Issue: 12 )