By Topic

A network based approach to the hybrid electromagnetic/circuit modeling of the power grid of multifunctional planar integrated circuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Rong, Aosheng ; Dept. of Electr. & Comput. Eng., Univ. of Illinois, Urbana, IL, USA ; Cangellaris, A.C.

A methodology is presented for the development of a numerical model for the power distribution network of the multi-functional, hybrid planar, integrated circuits. The discrete model of the structure of interest is developed in terms of two-dimensional finite element models for the domains between the closely spaced, adjacent power/ground planes and frequency-dependent multi-port network descriptions of the various three-dimensional features (e.g., pins, vias, metallization voids, and plan edges). Passive rational function fits of these network matrices allow for the development of a state-space model for the entire structure. A specific type of a network macromodel used for vias is described. Also included is a rational function model for the skin effect impedance of the metallization. A novel alternating direction implicit time-domain update scheme is used for the unconditionally stable integration of the state-space model under arbitrary current switching waveforms exciting the power distribution network.

Published in:

Electromagnetics in Advanced Applications, 2009. ICEAA '09. International Conference on

Date of Conference:

14-18 Sept. 2009