By Topic

Analysis of Blocking Probability in Noise- and Cross-Talk-Impaired All-Optical Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Pointurier, Y. ; Univ. of Virginia, Athens, Greece ; Brandt-Pearce, M. ; Subramaniam, S.S.

In all-optical networks with no wavelength converters, signals are switched optically inside the nodes and therefore propagate over hundreds or thousands of kilometers with no electrical regeneration. Over such distances, physical impairments, such as intersymbol interference (ISI), amplifier noise, and leaks within nodes (cross-talk), accumulate and can lead to serious signal degradation, resulting in poor quality of transmission (QoT) as measured by signal bit-error rates. The role of routing and wavelength assignment (RWA) algorithms is to accommodate incoming calls in optical networks over a route and a wavelength. RWA algorithms block calls if a continuous wavelength from the source to the destination cannot be found (wavelength blocking) or when the QoT of the call is not acceptable (QoT blocking). Evaluating RWA algorithms via simulations is possible but time consuming, and hence analytical methods are needed. Wavelength blocking has been studied analytically in the past, but QoT blocking has never been analytically modeled to our knowledge. In this paper, we present an analytical method to evaluate blocking probability in all-optical networks, accounting for physical layer impairments. Our physical layer model includes ISI and noise, two static effects that only depend on the network topology, and also cross-talk, which depends on the network state. Simulations on three different topologies with various numbers of channels, representing small- to large-scale networks, show that our technique is suitable for quick and accurate dimensioning of all-optical networks: the accuracy of the blocking rates computed with the analytical method, taking only seconds or minutes to run, is the same as that of simulations, which take hours to run.

Published in:

Optical Communications and Networking, IEEE/OSA Journal of  (Volume:1 ,  Issue: 6 )