By Topic

A Novel Miniature Four-Dimensional Force/Torque Sensor With Overload Protection Mechanism

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Qiaokang Liang ; State Key Lab. of Robot Sensing Syst., Univ. of Sci. & Technol. of China (USTC), Hefei, China ; Dan Zhang ; Yunjian Ge ; Quanjun Song

Force sensors play a key role in modern technology. Specifically, they can measure the force of mechatronics systems used in automated manufacturing environments, thereby enabling such systems to function effectively, thus facilitating decision making. However, the most current generation of force and torque sensors is complicated and expensive. Moreover, these sensors cannot be used for many applications because they are too brittle to sustain a large load. Accordingly, this paper presents a novel miniature four-dimensional force sensor, whose element is in the form of an E-type membrane connected to double rectangle slices. This sensor is aimed at obtaining the accurate interaction forces, including the normal force, both tangential force terms and the torque about the normal axis, in most applications. Furthermore, the sensor contains the advantages of configuration simplicity, overload protection and high sensitivity. Experiment results demonstrate its strong linearity, weak couplings among dimensions and simple calibration. The maximum nonlinearity errors is 0.18% F.S. and the maximum interference errors is 1.9% F.S.

Published in:

IEEE Sensors Journal  (Volume:9 ,  Issue: 12 )