By Topic

Precision Control and Compensation of Servomotors and Machine Tools via the Disturbance Observer

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Wei-Sheng Huang ; Dept. of Electr. & Control Eng., Nat. Chiao Tung Univ., Hsinchu, Taiwan ; Chun-Wei Liu ; Pau-Lo Hsu ; Syh-Shiuh Yeh

The computerized numerical control machine tool is a highly integrated mechatronic system in manufacturing processes. However, uncertainties degrade its motion accuracy. These include modeling errors, parameter variation, friction, and measurement errors that are present in either linear or nonlinear nature. In this paper, a state-space disturbance observer was successfully applied to servomotors to estimate and compensate for the uncertainties of parameter variation and current measurement problems, in the velocity and current loops, respectively. Furthermore, an autotuning procedure was developed accordingly to identify the varied parameters of the motor. Furthermore, by implementing the present servomotor systems in high-precision machine tools, the nonlinear friction compensation was adopted to reduce the slip-stick effect in contouring motion. Experimental results indicate that the roundness error has been significantly reduced from 13.3 to 2.0 ??m by applying the proposed approaches.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:57 ,  Issue: 1 )