By Topic

Interferometric Study of Pinch Phase in Plasma-Focus Discharge at the Time of Neutron Production

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

12 Author(s)
Kubes, P. ; Czech Tech. Univ. in Prague, Prague, Czech Republic ; Paduch, M. ; Pisarczyk, T. ; Scholz, Marek
more authors

A plasma column generated in the PF-1000 device working in deuterium gas at a current level of 1 MA was investigated with interferometric diagnostics and scintillation detectors. The beam of diagnostic laser of 527-nm wavelength was optically split into 16 beams with a time delay in the range from 0 to 220 ns. This diagnostic tool makes possible the imaging of the evolution of pinch geometry, the axial and radial distributions of plasma density in the column at the stagnation phase, and their comparison with the evolution of X-ray and neutron production. The evolution of dense structure is described with respect to its importance for fusion processes.

Published in:

Plasma Science, IEEE Transactions on  (Volume:37 ,  Issue: 11 )