Cart (Loading....) | Create Account
Close category search window
 

Experimental Analysis of a Mobile Health System for Mood Disorders

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Massey, T. ; Appl. Phys. Lab., Johns Hopkins Univ., Laurel, MD, USA ; Marfia, G. ; Potkonjak, M. ; Sarrafzadeh, M.

Depression is one of the leading causes of disability. Methods are needed to quantitatively classify emotions in order to better understand and treat mood disorders. This research proposes techniques to improve communication in body sensor network (BSN) that gathers data on the affective states of the patient. These BSNs can continuously monitor, discretely quantify, and classify a patient's depressive states. In addition, data on the patient's lifestyle can be correlated with his/her physiological conditions to identify how various stimuli trigger symptoms. This continuous stream of data is an improvement over a snapshot of localized symptoms that a doctor often collects during a medical examination. Our research first quantifies how the body interferes with communication in a BSN and detects a pattern between the line of sight of an embedded device and its reception rate. Then, a mathematical model of the data using linear programming techniques determines the optimal placement and number of sensors in a BSN to improve communication. Experimental results show that the optimal placement of embedded devices can reduce power cost up to 27% and reduce hardware costs up to 47%. This research brings researchers a step closer to continuous, real-time systemic monitoring that will allow one to analyze the dynamic human physiology and understand, diagnosis, and treat mood disorders.

Published in:

Information Technology in Biomedicine, IEEE Transactions on  (Volume:14 ,  Issue: 2 )

Date of Publication:

March 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.