Cart (Loading....) | Create Account
Close category search window

Quasi-Static Voltage Scaling for Energy Minimization With Time Constraints

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Andrei, A. ; Ericsson AB, Linköping, Sweden ; Eles, P. ; Jovanovic, O. ; Schmitz, M.
more authors

Supply voltage scaling and adaptive body biasing (ABB) are important techniques that help to reduce the energy dissipation of embedded systems. This is achieved by dynamically adjusting the voltage and performance settings according to the application needs. In order to take full advantage of slack that arises from variations in the execution time, it is important to recalculate the voltage (performance) settings during runtime, i.e., online. However, optimal voltage scaling algorithms are computationally expensive, and thus, if used online, significantly hamper the possible energy savings. To overcome the online complexity, we propose a quasi-static voltage scaling (QSVS) scheme, with a constant online time complexity O(1). This allows to increase the exploitable slack as well as to avoid the energy dissipated due to online recalculation of the voltage settings.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:19 ,  Issue: 1 )

Date of Publication:

Jan. 2011

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.