By Topic

LuGre-Model-Based Friction Compensation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Freidovich, L. ; Dept. of Appl. Phys. & Electron., Umea Univ., Ume, Sweden ; Robertsson, A. ; Shiriaev, A. ; Johansson, R.

A tracking problem for a mechanical system is considered. We start with a feedback controller that is designed without attention to disturbances, which are assumed to be adequately described by a dynamic LuGre friction model. We are interested in deriving a superimposed observer-based compensator to annihilate or reduce the influence of such a disturbance. We exploit a recently suggested approach for observer design for LuGre-friction-model-based compensation. In order to apply this technique, it is necessary to know the Lyapunov function for the unperturbed system, as well as the parameters of the dynamic friction model, and to verify that a certain structural property satisfied. The case when the system is passive with respect to the matching disturbance related to the given Lyapunov function is illustrated in this brief with a DC-motor example. The main contribution is some new insights into the numerical real-time implementation of a compensator for disturbances describable by one of various LuGre-type models. The other contribution, which is built upon the main one, is experimental verification of the suggested model-based observer design procedure.

Published in:

Control Systems Technology, IEEE Transactions on  (Volume:18 ,  Issue: 1 )