By Topic

Dictionary-Based Compression for Long Time-Series Similarity

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Willis Lang ; University of Michigan, Ann Arbor ; Michael Morse ; Jignesh M. Patel

Long time-series data sets are common in many domains, especially scientific domains. Applications in these fields often require comparing trajectories using similarity measures. Existing methods perform well for short time series but their evaluation cost degrades rapidly for longer time series. In this work, we develop a new time-series similarity measure called the Dictionary Compression Score (DCS) for determining time-series similarity. We also show that this method allows us to accurately and quickly calculate similarity for both short and long time series. We use the well-known Kolmogorov Complexity in information theory and the Lempel-Ziv compression framework as a basis to calculate similarity scores. We show that off-the-shelf compressors do not fair well for computing time-series similarity. To address this problem, we developed a novel dictionary-based compression technique to compute time-series similarity. We also develop heuristics to automatically identify suitable parameters for our method, thus, removing the task of parameter tuning found in other existing methods. We have extensively compared DCS with existing similarity methods for classification. Our experimental evaluation shows that for long time-series data sets, DCS is accurate, and it is also significantly faster than existing methods.

Published in:

IEEE Transactions on Knowledge and Data Engineering  (Volume:22 ,  Issue: 11 )