Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. For technical support, please contact us at We apologize for any inconvenience.
By Topic

Automatic Range Image Registration in the Markov Chain

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Yonghuai Liu ; Dept. of Comput. Sci., Aberystwyth Univ., Ceredigion, UK

In this paper, a novel entropy that can describe both long and short-tailed probability distributions of constituents of a thermodynamic system out of its thermodynamic limit is first derived from the Lyapunov function for a Markov chain. We then maximize this entropy for the estimation of the probabilities of possible correspondences established using the traditional closest point criterion between two overlapping range images. When we change our viewpoint to look carefully at the minimum solution to the probability estimate of the correspondences, the iterative range image registration process can also be modeled as a Markov chain in which lessons from past experience in estimating those probabilities are learned. To impose the two-way constraint, outliers are explicitly modeled due to the almost ubiquitous occurrence of occlusion, appearance, and disappearance of points in either image. The estimated probabilities of the correspondences are finally embedded into the powerful mean field annealing scheme for global optimization, leading the camera motion parameters to be estimated in the weighted least-squares sense. A comparative study using real images shows that the proposed algorithm usually outperforms the state-of-the-art ICP variants and the latest genetic algorithm for automatic overlapping range image registration.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:32 ,  Issue: 1 )