By Topic

A User Study to Compare Four Uncertainty Visualization Methods for 1D and 2D Datasets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Sanyal, J. ; Geosystems Res. Inst., Mississippi State Univ., Starkville, MS, USA ; Song Zhang ; Bhattacharya, G. ; Amburn, P.
more authors

Many techniques have been proposed to show uncertainty in data visualizations. However, very little is known about their effectiveness in conveying meaningful information. In this paper, we present a user study that evaluates the perception of uncertainty amongst four of the most commonly used techniques for visualizing uncertainty in one-dimensional and two-dimensional data. The techniques evaluated are traditional errorbars, scaled size of glyphs, color-mapping on glyphs, and color-mapping of uncertainty on the data surface. The study uses generated data that was designed to represent the systematic and random uncertainty components. Twenty-seven users performed two types of search tasks and two types of counting tasks on 1D and 2D datasets. The search tasks involved finding data points that were least or most uncertain. The counting tasks involved counting data features or uncertainty features. A 4 times 4 full-factorial ANOVA indicated a significant interaction between the techniques used and the type of tasks assigned for both datasets indicating that differences in performance between the four techniques depended on the type of task performed. Several one-way ANOVAs were computed to explore the simple main effects. Bonferronni's correction was used to control for the family-wise error rate for alpha-inflation. Although we did not find a consistent order among the four techniques for all the tasks, there are several findings from the study that we think are useful for uncertainty visualization design. We found a significant difference in user performance between searching for locations of high and searching for locations of low uncertainty. Errorbars consistently underperformed throughout the experiment. Scaling the size of glyphs and color-mapping of the surface performed reasonably well. The efficiency of most of these techniques were highly dependent on the tasks performed. We believe that these findings can be used in future uncertainty visualization desig- - n. In addition, the framework developed in this user study presents a structured approach to evaluate uncertainty visualization techniques, as well as provides a basis for future research in uncertainty visualization.

Published in:

Visualization and Computer Graphics, IEEE Transactions on  (Volume:15 ,  Issue: 6 )