By Topic

Exemplar-based Visualization of Large Document Corpus (InfoVis2009-1115)

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yanhua Chen ; Wayne State University, Detroit, MI ; Lijun Wang ; Ming Dong ; Jing Hua

With the rapid growth of the World Wide Web and electronic information services, text corpus is becoming available online at an incredible rate. By displaying text data in a logical layout (e.g., color graphs), text visualization presents a direct way to observe the documents as well as understand the relationship between them. In this paper, we propose a novel technique, Exemplar-based visualization (EV), to visualize an extremely large text corpus. Capitalizing on recent advances in matrix approximation and decomposition, EV presents a probabilistic multidimensional projection model in the low-rank text subspace with a sound objective function. The probability of each document proportion to the topics is obtained through iterative optimization and embedded to a low dimensional space using parameter embedding. By selecting the representative exemplars, we obtain a compact approximation of the data. This makes the visualization highly efficient and flexible. In addition, the selected exemplars neatly summarize the entire data set and greatly reduce the cognitive overload in the visualization, leading to an easier interpretation of large text corpus. Empirically, we demonstrate the superior performance of EV through extensive experiments performed on the publicly available text data sets.

Published in:

IEEE Transactions on Visualization and Computer Graphics  (Volume:15 ,  Issue: 6 )