By Topic

Constructing Overview + Detail Dendrogram-Matrix Views

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jin Chen ; Dept. of Geogr., Pennsylvania State Univ., University Park, PA, USA ; MacEachren, A.M. ; Peuquet, D.J.

A dendrogram that visualizes a clustering hierarchy is often integrated with a re-orderable matrix for pattern identification. The method is widely used in many research fields including biology, geography, statistics, and data mining. However, most dendrograms do not scale up well, particularly with respect to problems of graphical and cognitive information overload. This research proposes a strategy that links an overview dendrogram and a detail-view dendrogram, each integrated with a re-orderable matrix. The overview displays only a user-controlled, limited number of nodes that represent the ldquoskeletonrdquo of a hierarchy. The detail view displays the sub-tree represented by a selected meta-node in the overview. The research presented here focuses on constructing a concise overview dendrogram and its coordination with a detail view. The proposed method has the following benefits: dramatic alleviation of information overload, enhanced scalability and data abstraction quality on the dendrogram, and the support of data exploration at arbitrary levels of detail. The contribution of the paper includes a new metric to measure the ldquoimportancerdquo of nodes in a dendrogram; the method to construct the concise overview dendrogram from the dynamically-identified, important nodes; and measure for evaluating the data abstraction quality for dendrograms. We evaluate and compare the proposed method to some related existing methods, and demonstrating how the proposed method can help users find interesting patterns through a case study on county-level U.S. cervical cancer mortality and demographic data.

Published in:

Visualization and Computer Graphics, IEEE Transactions on  (Volume:15 ,  Issue: 6 )