By Topic

MEMS Endoscopic Tactile Sensor: Toward In-Situ and In-Vivo Tissue Softness Characterization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sokhanvar, S. ; Dept. of Mech. Eng., Massachusetts Inst. of Technol., Cambridge, MA, USA ; Packirisamy, M. ; Dargahi, J.

The superiority of endoscopic surgery over traditional open surgery in many areas has encouraged researchers to tackle a few shortcomings that are associated with the current state of minimally invasive surgical procedures. Among the shortcomings of minimally invasive surgery (MIS), the lack of sense of touch was the motive of the present work. Therefore, this research was aimed at restoring tactile sensing capabilities by developing a microelectromechanical systems (MEMS) tactile sensor for integration with existing MIS graspers. The tactile sensor is able to measure force, force position and also the softness of the grasped object. The transduction element, a uniaxial polyvinylidene fluoride (PVDF) film, was characterized before the microfabrication of the corrugated sensor. A finite-element model of the sensor system and soft material was also developed. The simulation results were compared with those of the experimental tests and the comparison showed good agreement.

Published in:

Sensors Journal, IEEE  (Volume:9 ,  Issue: 12 )