By Topic

Joint Particle Filter and UKF Position Tracking in Severe Non-Line-of-Sight Situations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Huerta, J.M. ; Signal Process. & Commun. Group (SPCOM), Tech. Univ. of Catalonia (UPC), Barcelona, Spain ; Vidal, J. ; Giremus, A. ; Tourneret, J.-Y.

The performance of localization techniques in a wireless communication system is severely impaired by biases induced in the range and angle measures because of the non-line-of-sight (NLOS) situation, caused by obstacles in the transmitted signal path. However, the knowledge of the line-of-sight (LOS) or NLOS situation for each measure can improve the final accuracy. This paper studies the localization of mobile terminals (MT) based on a Bayesian model for the LOS-NLOS evolution. This Bayesian model does not require having a minimum number of LOS measures at each acquisition. A tracking strategy based on a particle filter (PF) and an unscented Kalman filter (UKF) is used both to estimate the LOS-NLOS situation and the MT kinetic variables (position and speed). The approach shows a remarkable reduction in positioning error and a high degree of scalability in terms of performance versus complexity.

Published in:

Selected Topics in Signal Processing, IEEE Journal of  (Volume:3 ,  Issue: 5 )