By Topic

A Methodology to Predict the Impact of Substrate Noise in Analog/RF Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Bronckers, S. ; Interuniversity Microelectron. Center, Leuven, Belgium ; Scheir, K. ; Van der Plas, G. ; Vandersteen, Gerd
more authors

Substrate noise problems in a system-on-a-chip hamper the smooth cohabitation between analog and digital circuitries on the same die. Solving those problems will shorten the time to market. This paper presents a methodology that gives designers the necessary insight to solve this substrate noise problem. The methodology combines the strengths of the electromagnetic simulator, the parasitic extractor, and the circuit simulator. Its main assets are the ease of use, an acceptable simulation time, and a good accuracy. Moreover, this methodology does not need doping profiles that are hard to get hold off. The proposed methodology is demonstrated on two challenging examples: a 48-53-GHz LC voltage-controlled oscillator and a dc-to-5-GHz wideband receiver designed, respectively, in a 0.13-mum and a 90-nm CMOS technology. The substrate noise coupling mechanisms are revealed for both examples in a simulation time of less than 2 hours. The methodology is successfully validated by measurements performed on real-life prototypes of those examples with an accuracy of 1-2 dB.

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:28 ,  Issue: 11 )