Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

BSG-Route: A Length-Constrained Routing Scheme for General Planar Topology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tan Yan ; Dept. of Electr. & Comput. Eng., Univ. of Illinois at Urbana-Champaign, Urbana, IL, USA ; Wong, M.D.F.

Length-constrained routing is a very important issue for printed circuit board (PCB) routing. Previous length-constrained routers all have assumptions on the routing topology, whereas practical designs may be free of any topological constraint. In this paper, we propose a routing scheme that deals with general topology. Unlike previous works, our approach does not impose any restriction on the routing topology. Moreover, our routing scheme is gridless. Its performance does not depend on the routing grid size of the input while the routers in the papers of Ozdal and Wong and Kubo do. This is a big advantage because modern PCB routing configurations usually imply huge routing grids. The novelty of this work is that we view the length-constrained routing problem as an area assignment problem and use a placement structure, which is the bounded-sliceline grid, to help transform the area assignment problem into a mathematical programming problem. We then use an iterative approach to solve this mathematical programming problem. Experimental results show that our routing scheme can handle practical designs that previous routers cannot handle. For designs that they could handle, our router runs much faster. For example, in one of our data, we obtain the result in 88 s while the Lagrangian relaxation based router by Ozdal and Wong takes more than one day.

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:28 ,  Issue: 11 )