By Topic

A Central Limit Theorem for the SINR at the LMMSE Estimator Output for Large-Dimensional Signals

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Kammoun, A. ; Telecom ParisTech (ENST), Paris, France ; Kharouf, M. ; Hachem, W. ; Najim, J.

This paper is devoted to the performance study of the linear minimum mean squared error (LMMSE) estimator for multidimensional signals in the large-dimension regime. Such an estimator is frequently encountered in wireless communications and in array processing, and the signal-to-interference-plus-noise ratio (SINR) at its output is a popular performance index. The SINR can be modeled as a random quadratic form which can be studied with the help of large random matrix theory, if one assumes that the dimension of the received and transmitted signals go to infinity at the same pace. This paper considers the asymptotic behavior of the SINR for a wide class of multidimensional signal models that includes general multiple-antenna as well as spread-spectrum transmission models. The expression of the deterministic approximation of the SINR in the large-dimension regime is recalled and the SINR fluctuations around this deterministic approximation are studied. These fluctuations are shown to converge in distribution to the Gaussian law in the large-dimension regime, and their variance is shown to decrease as the inverse of the signal dimension.

Published in:

Information Theory, IEEE Transactions on  (Volume:55 ,  Issue: 11 )