By Topic

On the Information Rate of MIMO Systems With Finite Rate Channel State Feedback Using Beamforming and Power On/Off Strategy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Wei Dai ; Dept. of Electr. & Comput. Eng., Univ. of Illinois at Urbana-Champaign, Urbana, IL, USA ; Youjian Liu ; Rider, B. ; Lau, V.K.N.

It is well known that multiple-input multiple-output (MIMO) systems have high spectral efficiency, especially when channel state information at the transmitter (CSIT) is available. In many practical systems, it is reasonable to assume that the CSIT is obtained by a limited (i.e., finite rate) feedback and is therefore imperfect. We consider the design problem of how to use the limited feedback resource to maximize the achievable information rate. In particular, we develop a low complexity power on/off strategy with beamforming (or Grassmann precoding), and analytically characterize its performance. Given the eigenvalue decomposition of the covariance matrix of the transmitted signal, refer to the eigenvectors as beams, and to the corresponding eigenvalues as the beam's power. A power on/off strategy means that a beam is either turned on with a constant power, or turned off. We will first assume that the beams match the channel perfectly and show that the ratio between the optimal number of beams turned on and the number of antennas converges to a constant when the numbers of transmit and receive antennas approach infinity proportionally. This motivates our power on/off strategy where the number of beams turned on is independent of channel realizations but is a function of the signal-to-noise ratio (SNR). When the feedback rate is finite, beamforming cannot be perfect, and we characterize the effect of imperfect beamforming by quantization bounds on the Grassmann manifold. By combining the results for power on/off and beamforming, a good approximation to the achievable information rate is derived. Simulations show that the proposed strategy is near optimal and the performance approximation is accurate for all experimented SNRs.

Published in:

Information Theory, IEEE Transactions on  (Volume:55 ,  Issue: 11 )