By Topic

On the Diversity Gain of AF and DF Relaying With Noisy CSI at the Source Transmitter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kim, T.T. ; Dept. of Electr. Eng., Princeton Univ., Princeton, NJ, USA ; Poor, H.V.

The problem of optimizing resource allocation over a half-duplex relay channel with noisy channel state information at the source transmitter (CSIT) is studied, with a focus on the asymptotically high signal-to-noise ratio (SNR) regime. A novel upper bound on the diversity-multiplexing tradeoff (DMT) is derived, taking into account the quality of the CSIT. It is shown that from a DMT perspective, the decode-and-forward (DF) protocol is strictly optimal over a certain range of the multiplexing gains. When the quality of the CSIT is sufficiently high, the DMT performance of the DF protocol with noisy CSIT equals that of the dynamic DF protocol shifted above by a constant diversity gain, which depends only on the quality of the CSIT about the source-destination link. When the quality of the CSIT reduces, DF relaying is still DMT-optimal, but only over a smaller range of the multiplexing gains. In an intermediate range of the multiplexing gains, nonorthogonal schemes provide some additional gains when the CSIT quality is sufficiently low. It is also shown that the DMT of the amplify-and-forward (AF) protocol is offset by a constant term depending on the quality of the CSIT of the source-destination link only.

Published in:

Information Theory, IEEE Transactions on  (Volume:55 ,  Issue: 11 )