By Topic

The Generalized Area Theorem and Some of its Consequences

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Measson, C. ; Qualcomm, Flarion Technol., Bridgwater, NJ, USA ; Montanari, A. ; Richardson, T.J. ; Urbanke, R.

There is a fundamental relationship between belief propagation (BP) and maximum a posteriori decoding. The case of transmission over the binary erasure channel was investigated in detail in a companion paper (C. MEacuteasson, A. Montanari, and R. Urbanke, "Maxwell's construction: The hidden bridge between iterative and maximum a posteriori decoding," IEEE Transactions on Information Theory, submitted for publication). This paper investigates the extension to general memoryless channels (paying special attention to the binary case). An area theorem for transmission over general memoryless channels is introduced and some of its many consequences are discussed. We show that this area theorem gives rise to an upper bound on the maximum a posteriori threshold for sparse graph codes. In situations where this bound is tight, the extrinsic soft bit estimates delivered by the BP decoder coincide with the correct a posteriori probabilities above the maximum a posteriori threshold. More generally, it is conjectured that the fundamental relationship between the maximum a posteriori probability (MAP) and the BP decoder which was observed for transmission over the binary erasure channel carries over to the general case. We finally demonstrate that in order for the design rate of an ensemble to approach the capacity under BP decoding the component codes have to be perfectly matched, a statement which is well known for the special case of transmission over the binary erasure channel.

Published in:

Information Theory, IEEE Transactions on  (Volume:55 ,  Issue: 11 )