By Topic

Grip Control Using Biomimetic Tactile Sensing Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Wettels, N. ; Dept. of Biomed. Eng., Univ. of Southern California, Los Angeles, CA, USA ; Parnandi, A.R. ; Ji-Hyun Moon ; Loeb, G.E.
more authors

We present a proof-of-concept for controlling the grasp of an anthropomorphic mechatronic prosthetic hand by using a biomimetic tactile sensor, Bayesian inference, and simple algorithms for estimation and control. The sensor takes advantage of its compliant mechanics to provide a triaxial force sensing end-effector for grasp control. By calculating normal and shear forces at the fingertip, the prosthetic hand is able to maintain perturbed objects within the force cone to prevent slip. A Kalman filter is used as a noise-robust method to calculate tangential forces. Biologically inspired algorithms and heuristics are presented that can be implemented online to support rapid, reflexive adjustments of grip.

Published in:

Mechatronics, IEEE/ASME Transactions on  (Volume:14 ,  Issue: 6 )