By Topic

Motion Tuned Spatio-Temporal Quality Assessment of Natural Videos

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Seshadrinathan, K. ; Intel Corp., Chandler, AZ, USA ; Bovik, A.C.

There has recently been a great deal of interest in the development of algorithms that objectively measure the integrity of video signals. Since video signals are being delivered to human end users in an increasingly wide array of applications and products, it is important that automatic methods of video quality assessment (VQA) be available that can assist in controlling the quality of video being delivered to this critical audience. Naturally, the quality of motion representation in videos plays an important role in the perception of video quality, yet existing VQA algorithms make little direct use of motion information, thus limiting their effectiveness. We seek to ameliorate this by developing a general, spatio-spectrally localized multiscale framework for evaluating dynamic video fidelity that integrates both spatial and temporal (and spatio-temporal) aspects of distortion assessment. Video quality is evaluated not only in space and time, but also in space-time, by evaluating motion quality along computed motion trajectories. Using this framework, we develop a full reference VQA algorithm for which we coin the term the MOtion-based Video Integrity Evaluation index, or MOVIE index. It is found that the MOVIE index delivers VQA scores that correlate quite closely with human subjective judgment, using the Video Quality Expert Group (VQEG) FRTV Phase 1 database as a test bed. Indeed, the MOVIE index is found to be quite competitive with, and even outperform, algorithms developed and submitted to the VQEG FRTV Phase 1 study, as well as more recent VQA algorithms tested on this database.

Published in:

Image Processing, IEEE Transactions on  (Volume:19 ,  Issue: 2 )