By Topic

Detection of Quality Visualization of Appendiceal Orifices Using Local Edge Cross-Section Profile Features and Near Pause Detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Yi Wang ; Dept. of Comput. Sci., Iowa State Univ., Ames, IA, USA ; Tavanapong, W. ; Wong, J.S. ; JungHwan Oh
more authors

Colonoscopy is an endoscopic technique that allows a physician to inspect the inside of the human colon. The appearance of the appendiceal orifice during colonoscopy indicates a complete traversal of the colon, which is an important quality indicator of the colon examination. In this paper, we present two new algorithms. The first algorithm determines whether an image shows the clearly seen appendiceal orifice. This algorithm uses our new local features based on geometric shape, illumination difference, and intensity changes along the norm direction (cross section) of an edge. The second algorithm determines whether the video is an appendix video (the video showing at least 3 s of the appendiceal orifice inspection). Such a video indicates good visualization of the appendiceal orifice. This algorithm utilizes frame intensity histograms to detect a near camera pause during the apendiceal orifice inspection. We tested our algorithms on 23 videos captured from two types of endoscopy procedures. The average sensitivity and specificity for the detection of appendiceal orifice images with the often seen crescent appendiceal orifice shape are 96.86% and 90.47%, respectively. The average accuracy for the detection of appendix videos is 91.30%.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:57 ,  Issue: 3 )