Cart (Loading....) | Create Account
Close category search window
 

Optical description of solid-state dye-sensitized solar cells. II. Device optical modeling with implications for improving efficiency

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Huang, David M. ; Department of Chemical Engineering and Materials Science, University of California, Davis, California 95616, USA ; Snaith, Henry J. ; Gratzel, Michael ; Meerholz, Klaus
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.3204985 

We use the optical transfer-matrix method to quantify the spatial distribution of light in solid-state dye-sensitized solar cells (DSCs), employing material optical properties measured experimentally in the accompanying article (Part I) as input into the optical model. By comparing the optical modeling results with experimental photovoltaic action spectra for solid-state DSCs containing either a ruthenium-based dye or an organic indoline-based dye, we show that the internal quantum efficiency (IQE) of the devices for both dyes is around 60% for almost all wavelengths, substantially lower than the almost 100% IQE measured for liquid DSCs, indicating substantial electrical losses in solid-state DSCs that can account for much of the current factor-of-two difference between the efficiencies of liquid and solid-state DSCs. The model calculations also demonstrate significant optical losses due to absorption by 2,2,7,7-tetrakis-(N,N-di-p-methoxyphenyl-amine)-9,9-spirobifluorene (spiro-OMeTAD) and TiO2 in the blue and to a lesser extent throughout the visible. As a consequence, the more absorptive organic dye, D149, should outperform the standard ruthenium complex sensitizer, Z907, for all device thicknesses, underlining the potential benefits of high extinction coefficient dyes optimized for solid-state DSC operation.

Published in:

Journal of Applied Physics  (Volume:106 ,  Issue: 7 )

Date of Publication:

Oct 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.