Cart (Loading....) | Create Account
Close category search window
 

Estimation of sequential circuit activity considering spatial and temporal correlations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chou, T.-L. ; Dept. of Electr. Eng., Purdue Univ., West Lafayette, IN, USA ; Roy, K.

We present an exact and an approximate method for estimating signal activity at the internal nodes of sequential logic circuits. The methodology takes spatial and temporal correlations of logic signals into consideration. Given the state transition graph (STG) of a finite state machine (FSM), we create an extended state transition graph (ESTG), where the temporal correlations of the input signals are explicitly represented. From the graph we derive the equations to calculate exact signal probabilities and activities. For large circuits an approximate method for calculating the activities by unrolling the next state logic is proposed. Experimental results show that if temporal and spatial correlations are not considered, the switching activities of the internal nodes can be off by more than 40% compared to simulation based techniques. However, the results of the approximate method proposed in the paper is within 5% of logic simulation results

Published in:

Computer Design: VLSI in Computers and Processors, 1995. ICCD '95. Proceedings., 1995 IEEE International Conference on

Date of Conference:

2-4 Oct 1995

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.