By Topic

Adaptive simulation sampling using an Autoregressive framework

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sharookh Daruwalla ; Department of Computer Science, Portland State University, OR, U.S.A. ; Resit Sendag ; Joshua Yi

Software simulators remain several orders of magnitude slower than the modern microprocessor architectures they simulate. Although various reduced-time simulation tools are available to accurately help pick truncated benchmark simulation, they either come with a need for offline analysis of the benchmarks initially or require many iterative runs of the benchmark. In this paper, we present a novel sampling simulation method, which only requires a single run of the benchmark to achieve a desired confidence interval, with no offline analysis and gives comparable results in accuracy and sample sizes to current simulation methodologies. Our method is a novel configuration independent approach that incorporates an Autoregressive (AR) model using the squared coefficient of variance (SCV) of Cycles per Instruction (CPI). Using the sampled SCVs of past intervals of a benchmark, the model computes the required number of samples for the next interval through a derived relationship between number of samples and the SCVs of the CPI distribution. Our implementation of the AR model achieves an actual average error of only 0.76% on CPI with a 99.7% confidence interval of plusmn0.3% for all SPEC2K benchmarks while simulating, in detail, an average of 40 million instructions per benchmark.

Published in:

Systems, Architectures, Modeling, and Simulation, 2009. SAMOS '09. International Symposium on

Date of Conference:

20-23 July 2009